
Architecture Rationalization: A Methodology for Architecture Verifiability,

Traceability and Completeness

Antony Tang Jun Han

Faculty of ICT,

Swinburne University of Technology,

Melbourne, Australia

E-mail: {atang, jhan}@it.swin.edu.au

Abstract

Architecture modeling is practiced extensively in

the software industry but there is little attention paid to

the traceability, verifiability and completeness of

architecture designs. Deficiencies in any of these three

areas in an architecture model can be costly and risky

to projects. We propose the Architecture

Rationalization Method (ARM), which is based on

architecture rationale, to overcome these issues. ARM

makes use of both qualitative and quantitative

rationales for selecting architecture designs.

Quantitative rationale uses a model based on costs,

benefits and risks in the selection process. ARM

provides a method to determine when an architecture

model is complete in that the level of details

represented by the architecture design is sufficient.

We apply ARM to a real-life industry case

retrospectively to demonstrate how ARM can

overcome issues surrounding traceability and

verifiability.

1. Introduction

It is common practice in the software industry to

carry out architecture modeling as part of the software

development life cycle (SDLC). The current trend in

large-scale software development is to use architecture

frameworks in designing the structure of a software

system. Architecture design is a crucial step in the

SDLC. Despite its importance, there are not many

studies and practical methods to verify architecture

designs, to trace design rationales, or to ensure the

architecture model is complete.

Despite having software development processes,

largely the software community designs software and

system architectures based on experience and intuition

without having to justify why the software is

architected in a certain way as long as systems meets

requirements. The lack of guidance on design

rationalization is also evident in architecture

frameworks and software standards. Artifacts from

architectural activities always describe what is to be

built and how to build it. The documentation of the

design thought process is often omitted. In this case

study, we examine the prototype of a check clearing

system built and then abandoned due to the lack of

design rationale. This scenario is quite common in the

software industry. The key issues underlying such

cases are that (1) architecture rationales were not

recorded, and (2) consequently the reasons behind the

architecture decisions have vaporized [4] and could not

be traced or verified. Vital information such as

constraints, assumptions, considerations and tradeoffs,

which are essential to the understanding of the

architecture, are missing.

Given the issues underlying architecture designs,

we analyze key elements in architecture modeling in an

attempt to resolve them. The act of architecture is to

produce architecture models, it deals with structural

issues of the system and its designs are architectural

designs. A collection of architectural designs forms

the basis of an architecture model. Although detailed

design is a continuum of architecture design,

architecture activities are distinct from detailed

software in that they define the structure of the system

and they do not consider issues that elaborate detailed

designs. In this paper, when we refer to design, we

mean architectural design and when we refer to

detailed design, we mean detailed software or system

design. The architecture completeness issue described

in this paper will make a distinction between the two

activities.

Our motivation is to represent architecture rationale

and incorporate it into the architecture process to

address the issues of verifiability, traceability and

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

completeness of architecture designs. It is important to

note that architecture rationale is the fundamental

enabler to address these issues. Many systems that

exist now have some form of traceability between

designs and requirements through cross referencing,

but the lack of architecture rationale to support the

trace makes it difficult to understand the relationship

between elements being traced.

Architecture rationale has been identified by

researchers and standards bodies as crucial in the

architecture design process [4, 16, 18, 20], but none of

the architecture frameworks surveyed [22] prescribe

rationale as part of architecture deliverables and the

nature of the architecture rationale is unclear. Another

important aspect of architecture rationale is

verifiability since correct design decisions made at the

early stage of development have the greatest impact on

the system [16]. Our contributions in this paper are

the following:

Introduce the Architecture Rationalization Method

(ARM) as a framework to systematically rationalize

and record architecture decisions.

Make use of the Architecture Rationale (AR) for

recording qualitative and quantitative rationales to

facilitate architecture verifiability.

Provide requirements to requirements linkages,

requirements to design linkages and design to

design linkages through AR for architecture

traceability of decisions and for the representation

of design reasoning.

Propose a risk-based method to define architecture

completeness so that architects can determine the

scope of the architecture design and as such

separate its activities from detailed design.

Section 2 describes the background of this work,

current issues and related work in this area. Section 3

describes the elements of architecture rationale.

Section 4 describes the ARM methodology and its

application. We present the partially redesigned check

truncation system using ARM as a case study in

section 5 and we make some concluding remarks in

section 6.

2. Background and Related Work

The challenges in large-scale systems architecture

are to make balanced and correct design decisions in a

complex and often conflicting environment. Conflicts

arise from large numbers of competing functional

requirements, users with different objectives, diverse

processes and interfaces, competing non-functional

requirements such as performance, distribution and

reliability that cut-across the design of a system.

Viewpoints used in Architecture Frameworks help to

model complex systems. They take into account

system requirements, information, computation and

implementation modeling.

2.1. Viewpoints

An architecture model of a system consists of a

number of views. These architecture views not only

include software architecture but encompass

requirements and business strategies, data models and

supporting infrastructure as well. Different

architecture frameworks (AF) such as RM-ODP [17],

FEAF [7], TOGAF [23] and DoDAF [9] prescribe

slightly different viewpoints for architecture modeling.

The following are a generalization of the viewpoints:

Business / Enterprise View

Information / Data View

Computation / Application View

Engineering / Technology View

Different views represent architectural designs from

different perspectives. Models contained in views are

the results of design considerations, tradeoffs and

decision making. In this paper, architecture refers to

all architecture elements using these generalized

viewpoints with architecture rationales cross-cutting

these viewpoints to provide connectivity of decisions.

2.2. Verifiability

The architecture process involves a series of

decisions making based on design choices, tradeoffs

and compromises. Architecture verification checks that

the architecture model is complete and the rationale of

design decisions is sound and the design can satisfy

system requirements. Current practice of verification

in the industry is through peer review of design

specification during the design phase. The rationale of

design decisions is seldom documented. However,

architecture decisions should be verifiable during or

after development, with or without the presence of the

original architects. Architecture rationale is the vital

information in the verification process. The need to

verify architecture is recommended by IEEE standards

[14]. There are a number of research work related to

architecture design rationale, architecture evaluation

and the application of economic considerations [1, 2].

These methods require the presence of architects and

stakeholders to provide the information. In this paper,

we say that an architecture design is verifiable if:

There is a documented reason(s) of why the design

can satisfy the requirement(s) or

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

A design can be justified and traced to other

designs and / or requirements

Although there are suggestions as to what

information should be captured in architecture

rationale, there are few considerations as to how

architecture rationale should be represented in

architecture models and what should be the minimum

requisite for verification. AR proposed here contains

specific information to use in the verification of

architecture models.

2.3. Traceability

An architecture model, as represented by views, is

usually documented without cross referencing between

system requirements and design components.

Architects would consider business requirements and

system requirements in order to select an appropriate

design from different choices by using reasoning,

experience and intuition. A study by Ramesh and

Jarke [21] indicates that the traceability focus of the

surveyed systems are mostly on the satisfaction of

requirements. The lack of traceability of requirements

and designs to rationale inhibits the verifiability of

architecture design.

It is noted in [13], that traceability “provides critical

support for system development and evolution.”. The

need to ensure that requirements are allocated, or

traced, to software and hardware items is also

recommended by the IEEE standards [14, 15]. In our

case study, the lack of traceability has little impact on

initial implementation of a system, but it inhibits

another team of designers to properly understand why

the design is done in a given manner.

2.4. Differentiating Architecture and Detailed

Design

Perry and Wolf [20] state that architecture deals

with load bearing issues as against decoration issues.

This view is confirmed by the IEEE standard that

architecture is about “fundamental organization of a

system” [16]. The obvious questions are [13, 22] :

Based on what criteria should an architect consider

the scope of architecture modeling complete?

To what level of design details would architecture

modeling be considered complete and from where

do detailed design activities start?

Does every part of the system require the same

amount of architectural design details?

There has been some suggestions in this area [10]

but our survey shows that there is no distinction

between architecture and detailed design made by any

of the architecture frameworks [22]. The lack of

understanding of this area implies that (a) architecture

design activities could go beyond what is necessary,

i.e. over architecture; (b) the architecture design could

be incomplete; (c) the completeness and quality of the

architecture design cannot be verified at an early stage

when any changes have the lowest impact on

development; (d) roles and responsibilities of the

architects and the software designers can be

ambiguous in a project team.

3. Architecture Rationale

Architecture Rationale (AR) is an artifact defined to

record the reasons of requirements enhancements and

design rationale. It has two primary characteristics to

enable architecture verification and tracing. Reasoning

represents the rationale behind an architecture choice

to satisfy particular requirement(s). Referencing

provides cross references, or linkages, between

elements in an architecture model through an AR.

Figure 1. Architecture Rationale Model

The AR model is an UML representation depicted

in Figure 1. Both Architecture Rationale (AR) and

Alternative Architecture Rationale (AAR) have a

generic stereotype of <<AR>>. An instance of AR

contains reasons of a particular design decision at a

decision point and it references two or more elements

contained in the views of an architecture model. For

instance, a requirement in the Business View may be

referenced, or linked, to a design element in the

Computation View through an AR. This is represented

by associations using stereotype <<trace>> between

an AR and at least two entities in the view model.

AR consists of qualitative and quantitative

reasoning. Qualitative Rationale (QuR) describes in

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

textual format the qualitative information about a

design choice. Quantitative Rationale (QaR) provides

a quantifiable justification based on costs, benefits and

risks of a particular design. Additional scenarios could

be associated with an AR to show constraints or

special cases of a design. All these three entities are an

aggregate part of AR.

Alternate Architecture Rationale (AAR) has all the

properties of AR but this design has been rejected.

The rejected design model of AAR is contained in

Alternate Model. AAR is associated to the accepted

AR. AAR is useful in a number of ways. It helps the

architect to consider alternative design models; it

documents rejected designs and the rationale for

rejection; and it allows alternatives to be reconsidered

in future system evolution. AAR also provides

important information for architecture verification.

3.1. Elements of Architecture Rationale

AR is an object that documents the rationale of a

design choice. Elements of AR contain the following:

An identifier to uniquely represent the AR

At least two or more links to elements contained in

the architecture view model. The linked elements

may be from the same view or from different

views. Each element in a view is uniquely

identifiable

Qualitative rationale (see below)

Quantitative rationale (see below)

Scenarios to depict constraints or special cases

AR is associated with zero or more AAR and AAR

contains alternative design for future reference

There should be as many AR as decision points in

an architecture model to complete the model.

3.2. Qualitative Rationale

Choosing a design involves evaluation of design

alternatives, model feasibility, benefits of design and

compromises to be made. The decision making

process is as important as the decision being made

because it provides vital information for verification

and subsequent change management. As such,

recording architecture rationale coupled with the

ability to trace design decisions may be a potential

solution to address architecture erosion and drift issues

raised by Perry and Wolf [20]. AR and AAR make use

of qualitative rationales suggested in ATAM [2] and

we enhance and classify them into the following

categories:

Design constraints. They might be of a project

nature such as budget, schedule, resource; or of

requirements nature such as competing

requirements; or of technical nature such as

performance or capacity metrics

Design assumptions such as expected system usage

pattern or expected throughput

Strengths and weaknesses of a design

Tradeoffs that are compromises made between

competing requirements or designs

Risks and non-risks that document the known

uncertainties or certainties of a design. Risk

elements are quantified in QaR for comparisons

Scenarios that record design limitations or

exclusions where compromises have been made.

This is separate from the design model because

they are not adopted in the final system

Assessments that are reasons or justifications

behind the selection or exclusion of a design. This

attribute is mandatory because architects should

provide a balanced assessment after considering all

factors in QuR and QaR. Design strategies or

principles that dictate the decision, such as

modularization, abstraction or separation of

concerns, can be documented under this category.

Architects could use some or all of QuR categories

depending on the context of the architecture decision.

For instance, AR may link a business requirement to a

computational component, and then link to a non-

functional requirement, the constraints and

assumptions of the implementation of the non-

functional requirement would be documented in the

AR together with the assessment of the decision.

3.3. Quantitative Rationale

For most architecture designs, the decision making

process is based on the experience and intuition of

architects and the basis of decisions cannot be

subsequently measured. Quantitative rationale enables

systematic estimates of the likely impact of individual

decisions at each decision point. The likely impact of

a decision is represented by the architect’s estimate of

Expected Return (ER) on the part of architecture model

under consideration. The QaR approach is based on

three elements – cost, benefit and risk.

The architecture costs and benefits are represented

by two indices scaled from one to ten. The reasons for

using an index instead of money value are because (a)

some of the assessment cannot be expressed in money

terms for they may be intangible or difficult to

estimate; (b) there may be multiple factors in which

their benefits or costs values cannot be combined; (c)

the comparison of AR to AAR can be made using the

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

same scale and (d) it provides a uniform measure for

reviews and verification.

Architecture Cost Index (ACI) is a weighted index

that refers to the costs of implementing the decision or

design. ACI is an index that takes into consideration a

multitude of cost factors to provide a relative cost

index between alternative rationales. Considerations

for ACI weighing are the following:

Development costs take into account the amount of

development, level of development complexity,

current skill set and training requirement

Platform costs take into account the cost for

platform support such as hardware and software

Maintenance costs take into account routine

operational maintenance and support, software

maintenance, software modifiability and portability

Potential costs such as security, legal and other

implications that may arise from the design should

also be considered

Actual cost information to support the decision

making process should be gathered and analyzed if

possible and documented in the constraints section

within QuR for future references.

Architecture Benefits Index (ABI) is a weighted

index to represent the relative benefits an architecture

decision or design would deliver to satisfy the

concerned requirements. If compromises are made

between competing requirements, then the architect

would make a judgment on the relative priority of

requirements and the level of satisfaction the

architectural design provides to meet the requirements.

Similar assessments would be made for alternative

designs. CBAM provides a method to calculate the

benefit score [1] that is useful for ranking important

decisions but the cost of having a group of

stakeholders to constantly vote for all architecture

decisions could be high. ABI provides an alternative to

assess and estimate the benefits of architectural

designs.

There are two types of risks represented in ARM

and they are represented by ratios ranging between

zero and one. Outcome Certainty Risk (OCR)

identifies the risk or the uncertainty level of the

architectural design meeting the desired outcome

represented by the Architecture Benefits Index (ABI).

Implementation Certainty Risk (ICR) identifies the risk

or the uncertainty that there are no unexpected issues

in the implementation of the architectural design. In

other words, ICR represents the architect’s assessment

of the uncertainty that issues may occur during the

design, development or implementation phases, thus

affecting the certainty of the Architecture Cost Index

(ACI).

The QaR approach has three merits (a) architecture

rationale is quantified at each decision point; (b) ER

takes into account risks or uncertainties in architecture

modeling; (c) the soundness of each architecture

decision can be assessed and measured for evaluation

and verification. The use and interpretation of these

quantitative elements are different to the existing

quantitative models [1, 3] in that QaR requires

architects to make estimates for these elements.

However, we believe that experienced architects would

provide consistent estimates because the basis of these

estimates should be a well supported conscious

decision of tradeoffs between requirements, designs

choices and risks.

3.4. Rationale Evaluation

The decision making process of ARM relies on

rationalization at each decision point for all the

architecture requirements and designs. The evaluation

of alternative rationales is made at each decision point

and it is based on evaluating both QuR and QaR. QaR

is the representation of quantified costs, benefits and

risks of QuR. Quantitative rationale evaluation uses

Expected Return Ratio (ER) to measure the expected

benefits or returns of a design choice at a particular

decision point. Let Expected Benefit (EB) be

EB = (1 – OCR) * ABI

Expected Benefit (EB) is the Architecture Benefit

Index (ABI) discounted by the potential impact of not

meeting the benefits which is represented by OCR. Let

Expected Cost (EC) be

EC = (1 + ICR) * ACI

Expected Cost (EC) is the Architecture Cost Index

(ACI) amplified by the risk of design implementation

which is represented by ICR. Expected Return (ER)

can then be expressed as follows.

ACIICR

ABIOCR

EC

EB
ER

*)1(

*)1(

ER is the weighted expected return a design would

deliver. The higher the ER ratio, the better the

expected return. Given two different architectural

designs that deal with the same set of requirements, the

design that has a higher ER ratio is necessarily the

better choice because the architect would have

considered all relevant factors in QuR before

quantifying them in QaR. ER is an index to indicate

relative returns of each design, therefore architects

would assign the ratings in the same scale to

differentiate the design choices at a decision point to

justify the selection.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Evaluation of risks is an important and useful aspect

of architecture modeling because it provides a means

to discover and identify uncertainties [5]. As such, we

argue that it should be done as an ongoing and

incremental activity during the architecture

construction process. Some research work suggests

that software architecture risk is evaluated when a

model is relatively complete [12], but ARM risk

analysis is carried out during the entire decision

making process at each decision point. An automated

tool would facilitate the recording and calculation of

quantitative rationale for practical use.

4. Architecture Rationalization Method

The Architecture Rationalization Method (ARM) is

a methodology to rationalize architecture design

decisions based on architecture frameworks. ARM

uses a top down approach in architecture design

employing two generic techniques with added focus on

rationalization:

A requirement refinement technique

An architecture decomposition technique

Outcomes of ARM are architecture rationale (AR)

that link related requirements and design elements.

ARM is used with architecture frameworks and will

complement existing architecture practices. AR as the

additional architecture artifact can be added to and

used in existing architecture knowledge base.

4.1. Requirements Refinement

Architecture may involve in defining initial

business or functional requirements but an architecture

design process often leads to refinement of functional

requirements (FR) due to conflict resolutions or

requirements clarifications. Architecture design often

clarifies and defines non-functional requirements

(NFR) or quality of services such as system reliability

and performance. Refining or defining FR or NFR

takes place when an architecture design is

contemplated and the feedback from the design refines

the original requirements. Architecture rationales

drive the feedback loop and the refinement process.

Refined requirements are linked to AR as part of

the ARM process. An FR may have implications on,

say, the usability of the system. With clarifications and

tradeoffs, stakeholders may agree to change the

requirement. NFR is an important part of architecture

modeling because NFR need to deliver quality of

services in order for FR in a system to be realized.

NFRs are analyzed and defined in an iterative way in

the architecture process [6, 8, 19]. Agreed NFR are

documented in the Business View. AR will document

the rationale and link the defined or refined NFR to

any relevant FR and design.

ARM uses AR as a catalyst to refine FR and NFR.

Outcomes of the refinement process would be the

refined requirements, FR or NFR, within the Business

View. ARs are created to link inter-related

requirements and design components.

4.2. Architecture Decomposition

The architecture development process is an iterative

process of decomposing architecture designs to realize

the implementation of the system. ARs are created

during iterations of the decomposition and decision

making process that cross reference or link architecture

elements with increasing level of details. During

decomposition, the linkages could connect between

requirements, between requirements and design

components, and between design components. We

define design components as components that belong

to the Information View, the Computation View or the

Technology View.

Figure 2 shows an example of architecture

decomposition as more specific and detailed

architecture designs are created for each of the

requirements. The increasing level of details provided

by the architecture design would eventually satisfy all

architectural level requirements in the Business View.

Figure 2. Architecture Decomposition with AR

The ARM decomposition process goes through

multiple iterations. It uses AR to link requirements to

design or to link designs of different levels. This

rationale centric technique for decomposing designs

into finer details has several merits:

Ensure that the relationships between FR, NFR and

the architecture designs that cross-cut architecture

views are maintained

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Ensure that design decisions are rational

Provide linkages for tracing design models

Serve as an aid for checking completeness and

soundness of architecture model

For complete architecture traceability, it is

necessary that all architectural level requirements in

the Business View are linked to architecture designs in

the other views. Section 4.3 describes architectural

level requirements and when architecture

decomposition process is considered complete.

4.3. Architecture or Detailed Design

Architecture is concerned with the structural design

of the system. Its objectives and activities are different

to detailed software design. The need for such

distinction lies in the role of architects and the need for

architecture verification. There is currently no agreed

definition on the amount of details that are required in

architecture modeling in order to satisfy architecture

objectives. Instead of using Intensional and Non-local

properties [10] to distinguish architecture activities, we

propose a method for distinguishing architecture

activities from detailed design activities based on the

level of risks. The level of risks represents the

uncertainty of the architecture model to meet its

requirements. Architects would provide estimates for

Outcome Certainty Risk (OCR) and Implementation

Certainty Risk (ICR) at each decision point. OCR

represents uncertainty of meeting outcome objectives

set out in FR or NFR. This risk may arise for a

number of reasons:

FR or NFR may be ambiguous and need to be

clarified or redefined

A design may have an impact on certain aspects of

NFR and the extent of the impact is unknown

Certain external environmental factors may have an

impact on the implementation of requirements and

the extent of the impact is unknown

ICR represents uncertainty in implementing the

design. This risk may arise for the following reasons:

Technical feasibility of the implementation

Uncertainty due to complexity of the design

Uncertainty due to lack of experience, knowledge

or skills

These two types of risks can be resolved through

iterations of refinement and decomposition. ARM

provides a means to record and analyze these risks, and

reduce them to the extent that both architects and

stakeholders agree on the refined requirements and

stakeholders are relatively certain that the architecture

model would satisfy these requirements. OCRs and

ICRs of higher level ARs are adjusted accordingly to

reflect the risk levels of the new designs. When this

certainty level is reached for all architectural

requirements and designs, the architecture model is

complete.

Different requirements in the system post different

levels of risks. The level of design details required in

various parts of an architecture model vary depending

on the level of risk. For instance, a reusable item with

a well defined behavior and interface does not require

additional in-depth architecture design. On the other

hand, requirements that are complex in nature or have

extensive NFR implications may need further

investigation into its technical feasibility or detailed

design to ascertain feasibility and cost. Requirements

that need architectural investigations are called

architectural level requirements. Requirements that do

not require architectural investigations because their

risks are low become the concern of detailed system

design activities.

OCR and ICR depict the levels of uncertainties of a

design in meeting its objectives. So they can be used

to determine whether further decomposition is required

for the particular design area. Since the determination

of OCR and ICR are semi-objective, the acceptable

level of risk becomes a semi-objective assessment and

could be set to a defined acceptable level depending on

projects. We choose to use 20% as a guideline. This

guideline is arbitrary in which the authors are

comfortable with, more empirical work is required to

establish a standard. Should either OCR or ICR be

above this level, investigation or modeling at a more

detail level is required until the risk is reduced to 20%

level or below. The following are necessary

conditions for the completeness of an architecture

model:

All known NFRs have been identified through

requirements refinement

All known architecture level requirements, FR and

NFR, have corresponding linkages to design

components through AR, directly or indirectly

All design components have corresponding

linkages through AR

For each AR, OCR and ICR are below a defined

acceptable level

All high risk FRs, as indicated by OCR and ICR,

should be part of architecture level requirements and

need to be a part of architecture design. Low risk FRs

do not require architectural design because they do not

have structural impact on architecture. NFR usually

have higher risk factors because (a) NFRs usually cut-

across a large part of the system; (b) NFRs are usually

competing with other NFRs and (c) the impact of a

design to satisfy an NFR requires more design

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

attention. Therefore, all NFR should be considered in

architecture modeling. This mechanism provides a

way to define the scope of architecture activities and

allow measurement of completeness of architecture

outcomes. A complete architecture model is defined as

a model of a system, based on a set of requirements,

which has a low possibility that subsequent detailed

designs would have major impacts on the overall

implementation, structure or outcome of the system.

5. A Retrospective Case Study

The case study originates from initial designs

performed by the first author on an E-payment

product. The prototype was built and then handed

over to another team. The prototype was subsequently

abandoned when the second team found that they

could not enhance it to become a full product due to

the lack of the system’s design knowledge. There was

no AR to explain why the architecture was designed

the way it was. Risks were not represented by ICR, and

in retrospect they were exceedingly high because the

second team did not have the background knowledge

of the initial development. The purpose of this case

study is to illustrate the design rationale retention that

would be captured without original designers’

involvement. The system is highly complex and only a

small part of the system is described.

The main function of the E-payment system is to

truncate checks at the point of deposit and use check

images for central clearing. The prototype was

developed using C++. Architecture specification and

detailed design specification were also available.

Figure 3. Multi-pass Clearing Model

Checks are deposited at bank branches and they

need to be transported, or presented, to a central

clearing house for sorting and then moved to paying

banks to validate that they can be honored. The

system uses the Paperless Automated Check Exchange

and Settlement (PACES) standards set out by Financial

Services Technology Consortium (FSTC) [11]. There

are a number of general functional requirements.

Images and data of checks are bundled and

transmitted in presentment files in X9.37 and X9.46

format

All transmissions of presentments are encrypted

All presentments are digitally signed

Clearing cycles must be completed within their

respective time windows

Perform financial postings

We assume that an average file contains 50,000

checks and the file size is about 6GB. The system

should process a peak of one million checks within a

ninety minutes window.

There are two possible models to design the check

clearing process in the system. The first model,

depicted in Figure 3, uses a sequential method of

processing where the presentment file is decrypted and

authenticated by a security process. Clear text

presentment is stored in an intermediate file and then

processed separately to decompose the data into check

images and check data. This model would involve

three passes of data files using one write and two

reads. This design requires 120GB of temporary

space. This design would satisfy the functional

requirements but we are not certain that it would

satisfy the NFR, specifically the performance criteria

under load. We estimate the ABI to be 6 and OCR to

be 50% (medium risk). The implementation of the

model will be simple and we estimate the ACI to be 5

(average cost) and ICR to be 20% (low risk). ER is

therefore 0.5.

Figure 4. Single-pass Clearing Model

Figure 4 shows the single-pass clearing model. This

model uses a single process to decrypt the presentment

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

file and store it partially in memory through buffer

management. Internal control is managed by

ProcessControl() to decompose, authenticate and

process in a non-sequential way. This model is given

an ABI index of 8. It should perform better than the

multi-pass model because of reduced processing, its

OCR is given a value of 30%. ACI and ICR are higher

and they are estimated to be 7 and 30% respectively.

ER is estimated to be 0.61.

The ER ratio is higher in the single-pass model than

the multi-pass model mainly because it has lower

performance risk. Therefore, we continue to pursue

the single pass model. A decision cannot be finalized

until risk factors represented by OCR and ICR in the

single pass model are reduced to an acceptable level of

20%. Further assumptions and feasibility tests are

required:

An assumption of between 4 to 20 bank

connections during the check presentment window

Processing time of a single process for decryption

and authentication using Elliptic Curve

Cryptography on a single node is tested and the

results show that it can process 50,000 checks

within 10 minutes with six concurrent processes

It is estimated that a single node (computer server)

could support insertion of images and data into the

data stores at a rate of 500 checks per sec

It is estimated that reading a data file of 6GB

requires approximately 120 seconds

Based on the assumptions and the testing, we

estimate that the Single–pass model can process up to

300,000 checks, or 36GB data, in about 40 minutes on

a single node. Therefore, the OCR level can be

reduced to 20% if the architecture design uses two

nodes for processing simultaneously.

Figure 5. Decomposed Single-pass Model

This architecture requires NFR to be refined to

reflect new reliability requirements due to a dual-nodes

architecture. In Figure 5, AR2 is the new rationale for

linking the dual node system. It links performance and

reliability requirements in NFR to the Computation

View and the Technology View. The Single-pass

design requires AR3 to link the additional reliability

requirement (R12.4) because of the introduction of

dual-nodes. ICR in AR1 is still above the acceptable

level and so more decomposition is required to reduce

implementation risk. The risk lies in the management

of buffers and control mechanism in a single process to

eliminate multiple reads of external files. The single-

pass process has to (a) create and manage dynamic

buffers that store the presentment file during

processing; (b) the presentment is decrypted,

authenticated and processed in a staggered and

progressive way. AR5, therefore, contains the

rationale of introducing RawBuffer and ECPBuffer to

manage input as it is read and processed. AR4

contains the rationale of a checkpoint requirement for

process recovery. AR5 links a new data entity

PresentmentFileCtl in the Information View and

Checkpt component in the Computation View. ICR in

each design area is reduced to 15% after iterations of

architecture refinement and decomposition. As sub-

designs of AR1 are explored, its risks are subsequently

reduced to an acceptable level and the architecture

design in this area is considered complete.

ARs document the rationale of the design for

traceability and verifiability of architecture designs and

decisions. Previously, architecture design rationale

was not considered. As cross-teams development and

development outsourcing become a common place, AR

has a vital role to play in architecture development.

The lack of AR and its traceability in this case

inhibited the understanding of the original architectural

design and so the team which took over the check

truncation project judged it easier to redesign from the

beginning. Design information may be intuitive or

obvious to architects involved in the design process

but when these people are no longer part of the project

team, this knowledge vaporizes if not recorded.

6. Conclusion

In this paper, we have provided an initial

framework of Architecture Rationalization Method

based on qualitative and quantitative reasoning. Using

Expected Return (ER) in Architecture Rationale (AR),

architecture decisions become quantifiable and

verifiable. A number of new ideas are incorporated

into ARM. Firstly, the uncertainty, as represented by

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

risks, defines the completeness of the architecture

refinement and decomposition processes. Secondly,

qualitative and quantitative properties of AR and AAR

provide the basis for verification of architecture

decisions. Thirdly, AR and its linkages to architecture

elements such as requirements and designs in

architecture views provide traceability of decisions.

The case study demonstrates that essential

information for tracing and verifying architecture can

be captured by ARM. This information is essential in

supporting architecture evolution. The lack of

quantifiable information for rationale analysis is

circumvented by ARM using quantitative rationale.

Documented ARs provide metrics that can be used for

verification of decisions and assessment of architects’

judgments.

This research is work in progress and we are

extending our research into ARM in a number of areas:

(a) a semantic model of AR and its implementation

using an existing UML tool, (b) an architecture

decision graph and its inference capabilities to support

complexity and impact analysis, (c) measurement of

architecture design risks, design coverage and model

accuracy based on the decision representation, and (d)

an empirical survey of architects’ risk assessment to

further study acceptable risk levels in architecture

design.

7. References

[1] J. Asundi, R.Kazman, and M. Klein, "Using Economic

Considerations to Choose Amongst Architecture Design

Alternatives," Carnegie Mellon University, Software

Engineering Institute CMU/SEI-2001-TR-035, ESC-TR-2001-

035, 2001.

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice. Boston: Addison Wesley, 2003.

[3] B. W. Boehm, Software Engineering Economics. New Jersey:

Prentice Hall PTR, 1981.

[4] J. Bosch, "Software Architecture: The Next Step," presented at

Software Architecture: First European Workshop, EWSA 2004,

St Andrews, UK., 2004.

[5] R. Charette, Software Engineering Risk Analysis and

Management. New York: McGraw-Hill Book Company, 1989.

[6] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-functional

requirements in software engineering. Boston: Kluwer

Academic, 2000.

[7] CIO-Council, "Federal Enterprise Architecture Framework

version 1.1," 1999, http://www.cio.gov/archive/fedarch1.pdf.

[8] M. Denford, J. Leaney, and T. O'Neill, "Non-Functional

Refinement of Computer Based Systems Architecture,"

presented at The 11th IEEE International Conference and

Workshop on the Engineering of Computer-Based Systems.,

2004.

[9] Department of Defense, "Department of Defense Architecture

Framework Version 1.0 - Vol 1 Definition & Guideline and

Vol 2 Product Descriptions," 2003,

http://www.aitcnet.org/dodfw.

[10] A. Eden and R. Kazman, "Architecture, Design,

Implementation," presented at International Conference for

Software Engineering, 2003.

[11] FSTC, "Paperless Automated Check Exchange and Settlement

(PACES)," 2000, http://www.fstc.org/projects/paces/index.cfm.

[12] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W.

Abdelmoez, D. E. M. Nassar, H. Ammar, and A. Mili,

"Architectural-level risk analysis using UML," IEEE

Transactions on Software Engineering, vol. 29, pp. 946-960,

2003.

[13] J. Han, "TRAM: A Tool for Requirements and Architecture

Management," presented at Proceedings of the 24th

Australasian Computer Science Conference, Gold Coast,

Australia, 2001.

[14] IEEE, "IEEE/EIA Standard - Industry Implementation of

ISO/IEC 12207:1995, Information Technology - Software life

cycle processes (IEEE/EIA Std 12207.0-1996)," IEEE 1996.

[15] IEEE, "IEEE/EIA Guide - Industry Implementation of ISO/IEC

12207:1995, Standard for Information Technology - Software

life cycle processes - Life cycle data (IEEE/EIA Std 12207.1-

1997)," IEEE 1997.

[16] IEEE, "IEEE Recommended Practice for Architecture

Description of Software-Intensive System (IEEE Std 1471-

2000)," IEEE Computer Society 2000.

[17] ISO/ITU-T, "Reference Model for Open Distributed Processing

(ISO/ITU-T 10746 Part 1 - 4)," Information Standards

Organisation 1997.

[18] J. Lee and K. Lai, "What is Design Rationale?," in Design

Rationale - Concepts, Techniques, and Use, T. Moran and J.

Carroll, Eds. New Jersey: Lawrence Erlbaum, 1996, pp. 21-51.

[19] M. Moore, R. Kazman, M. Klein, and J. Asundi, "Quantifying

the Value of Architecture Design Decisions: Lessons from the

Field," presented at International Conference on Software

Engineering, 2003.

[20] D. E. Perry and A. L. Wolf, "Foundation for the Study of

Software Architecture," ACM SIGSOFT Software Engineering

Notes, vol. 17, pp. 40- 52, 1992.

[21] B. Ramesh and M. Jarke, "Towards Reference Models for

Requirements Traceability," IEEE Transactions on Software

Engineering, vol. 27, pp. 58-93, 2001.

[22] A. Tang and J. Han, "A Comparative Analysis of Architecture

Frameworks," presented at 1st Asia-Pacific Workshop on

Software Architectures and Component Technologies, APSEC

2004, Korea, 2004.

[23] The Open Group, "The Open Group Architecture Framework

(v8.1 Enterprise Edition)," 2003,

http://www.opengroup.org/architecture/togaf/#download.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

